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ABSTRACT - This study presents a stochastic method to decompose projected
seasonal rainfall into daily rainfall using a first-order Markov chain for rainfall
occurrence and a Gamma distribution for rainfall intensity. The model is applied to
the National Capital Region (NCR) of the Philippines using historical daily rainfall
data from 1970 to 2000 and seasonal climate projections from PAGASA (2018) under
RCP 4.5 and RCP 8.5 scenarios. Transition probabilities are modeled as functions of
seasonal rainfall totals, allowing daily rainfall sequences to be generated based on
projected seasonal values. Simulation results reveal seasonal shifts in rainfall
characteristics: the dry season (Dec-Jan-Feb) and early wet season (Mar-Apr-May)
show increases in both wet-day frequency and intensity, while the wet season (Jun-
Jul-Aug) and post-monsoon period (Sep-Oct-Nov) show decreases in both. While a
single realization is shown for illustration, Z-scores are computed from 10,000
simulated realizations to assess the model’s statistical consistency. While not intended
for precise daily predictions, the model offers a useful tool for exploring plausible
rainfall scenarios under climate change. The approach can support applications in
flood risk assessment and adaptation planning. Future improvements may include
higher-order Markov chains, alternative intensity distributions, and formal validation
to enhance model accuracy and applicability across regions.

Keywords: climate change, decomposed seasonal rainfall, rainfall intensity, rainfall
occurrence

INTRODUCTION

The Philippines, an archipelagic country in Southeast Asia, experiences monsoon rains and
around 20 tropical cyclones or typhoons annually (DOST-PAGASA, 2011). These contribute to frequent
flood-related disasters, resulting in loss of lives, property, and livelihoods (Hong et al., 2022; Villafuerte
et al., 2015). As climate change intensifies, risks are expected to increase, making it important to develop
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reliable rainfall projections to inform disaster prevention, adaptation, and mitigation planning (DOST-
PAGASA & Manila Observatory Ateneo de Manila University, 2020; Hong et al., 2022; Villafuerte et al.,
2020; Villafuerte et al., 2020; Worku et al., 2018; Yoo et al., 2016).

Daily rainfall projections are essential for a wide range of climate-sensitive applications that
depend on the timing and intensity of rainfall events. For instance, flood simulations, drainage system
design, and early warning systems depend on estimates of rainfall on specific days, particularly those that
may trigger flooding. In agriculture, daily rainfall timing directly affects planting schedules, irrigation
planning, and crop yields, especially for rainfed systems. Crops are often sensitive not only to the amount
of rainfall but also to when it occurs during their growth stages (Rasool et al., 2024).

The Philippine Atmospheric, Geophysical and Astronomical Services Administration
(PAGASA), the country’s national weather and climate agency, regularly publishes assessments of the
current and projected climate. In its 2011 report, PAGASA observed a non-statistically significant increase
in the intensity and frequency of extreme rainfall events, and a similar trend in the number of strong tropical
cyclones (with maximum sustained winds of 150 kph and above) based on data from 1951-2009 (DOST-
PAGASA, 2011). A 2018 report highlighted spatial variability in rainfall trends (baseline 1971-2000), with
Northern Luzon, Palawan, western Visayas, and parts of Mindanao experiencing decreasing annual rainfall,
while the rest of the country saw increasing trends, particularly during the northeast monsoon season
(DOST-PAGASA, 2018).

In the 2018 report, PAGASA provided seasonal (Dec—Jan—Feb, Mar—Apr—May, Jun—Jul-Aug,
and Sep—Oct—Nov) rainfall projections per province to account for spatial variability. These projections
were downscaled from global climate models under Representative Concentration Pathways (RCP) 4.5 and
8.5 for 2036-2065. RCP 4.5 is a stabilization scenario with intermediate greenhouse gas concentrations,
while RCP 8.5 assumes high emissions (IPCC, 2014). Under RCP 8.5, rainfall in Mindanao could decrease
by over 40%, while Luzon and western Visayas could see more than a 40% increase by mid-century. A
more recent 2021 report provided projected climate extremes per province (baseline 1986-2005), showing
a general decreasing trend in rainfall nationwide, with more localized extreme rainfall events (DOST-
PAGASA & Manila Observatory Ateneo de Manila University, 2020). Other studies have similarly
observed increasing rainfall during Dec—Jan—Feb and decreasing rainfall during Jun—Jul-Aug (Hong et al.,
2022; Supari et al., 2020; Tangang et al., 2020; Villafuerte et al., 2015).

These seasonal projections, especially those from PAGASA, have been used in integrating
scientific information into climate-sensitive development planning at local levels (DOST-PAGASA, 2018;
DOST-PAGASA & Manila Observatory Ateneo de Manila University, 2020). However, their coarse
temporal resolution limits their application in activities that require daily rainfall data, such as hydrologic
modeling or flood simulations. Seasonal totals do not indicate which specific days will be rainy or how
much rainfall will occur on each day. For decision-makers and modelers, it is crucial to identify not just
the season, but the specific days when rainfall could reach flood-inducing levels. This information is vital
for designing measures such as drainage systems, flood forecasting tools, and evacuation plans.

To bridge this gap, stochastic weather generators can be used to convert seasonal rainfall
projections into daily rainfall realizations. Stochastic rainfall models account for the inherently random
nature of rainfall occurrence and intensity. In a study from 2016, Yoo et al. used a first-order Markov chain
to model monthly rainfall by estimating historical transition probabilities between wet and dry days and
modeling rainfall intensity. They then incorporated climate projections to assess changes in daily rainfall
characteristics not captured by shifts in wet-day frequency alone (Yoo et al., 2016).
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Building on this, we apply a Markov chain-Gamma model to decompose PAGASA’s 2018
seasonal rainfall projections into daily rainfall. We model daily rainfall occurrence using a two-state first-
order Markov chain, with states representing rain or no rain, and transition probabilities capturing rainfall
occurrence on a given day. After which, we use a Gamma distribution, which is suitable for positively
skewed data, to model the rainfall intensity. We use historical daily rainfall data from the National Oceanic
and Atmospheric Administration (NOAA) for the model. The focus of this study is the National Capital
Region (NCR), an urban area highly vulnerable to flooding. We apply the model to PAGASA’s lower
bound, median, and upper bound seasonal rainfall projections for RCP 4.5 and 8.5 (Table B-1 in (DOST-
PAGASA, 2018)). After developing the stochastic framework for disaggregating the seasonal rainfall
projections as outlined above, we evaluate the performance of the model using Z-scores derived from
historical observations and simulated rainfall. We apply the method to generate one possible daily rainfall
time series under RCP 4.5 and RCP 8.5 scenarios for illustrative purposes, and we use the model parameters
to derive projected daily rainfall characteristics.

While this study provides a useful method for decomposing seasonal rainfall projections into
daily rainfall data, it also has several limitations. First, the model is based on past rainfall patterns and
assumes that future rainfall will behave similarly. Thus, there may be rainfall patterns in the future that the
model cannot predict. Second, although the Gamma distribution is good for modeling rainfall intensity, it
may not fully capture very heavy rainfall events, like heavy monsoon rains or storm rains, that can cause
major flooding. Third, the model does not consider changes in the timing or length of the rainy season,
which could also shift in the future. Fourth, the model uses rainfall data that covers large areas, which may
miss small-scale local differences. Lastly, we focused only on rainfall and did not include other factors
such as temperature, humidity, or wind, which also affect agriculture and flood risk. We also only generated
one possible version of a daily rainfall time series for each climate scenario. Since rainfall is random by
nature, many possible outcomes exist, and a single version may not show the full range of possibilities.
These limitations should be considered when interpreting the results and applying them in planning or
decision-making.

MATERIALS AND METHODS

This section outlines the data sources, study area, and modeling framework used to disaggregate
seasonal rainfall projections into daily rainfall estimates.

Study Area and Data Source

Daily rainfall data from 1 January 1970 to 31 December 2000 are collected from the Science
Garden station in Quezon City, Philippines (Latitude: 14.65, Longitude: 121.05), as available from the
National Oceanic and Atmospheric Administration (NOAA) (NOAA, n.d.).

We use the seasonal rainfall projections provided in Table B-1 DOST-PAGASA (2018)
Observed and Projected Climate Change in the Philippines report for the National Capital Region (NCR),
which includes lower bound, median, and upper bound estimates of seasonal changes (in both percentage
and millimeters) for the years 2036-2065.

Modelling Daily Rainfall Occurrence

If X, is a random variable indicating rainfall occurrence on a day t in season k, where k =
1,2,3,4 corresponds to Dec—Jan—Feb, Mar-Apr-May, Jun—Jul-Aug, and Sep—Oct—Nov, respectively, we
model X, as a two-state first-order Markov chain (see Yoo et al., 2016). A day is in state 1 (wet) if
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rainfall exceeds 0 mm, and in state 0 (dry) otherwise. This results in four transition probabilities p;;,
where i, j = 0,1, denoting the probability of transitioning from state i on day t — 1 to state j on day ¢, in
season k. The transition probability p;,, denotes the likelihood that a day is dry (state 0) given that the
previous day was wet (state 1), specifically within the March—April-May season.

Because a day can only be wet or dry, p1ox = 1 — P11 and pog i = 1 — Poox, We estimate only
Pook and pyq x using the linear regression models:

Pook = AokSk + Do (1a)
P11k = A1 kSk + by (1b)

Here, S, is the seasonal rainfall total, and a;, and b;, are regression parameters. The Ljung-Box
autocorrelation test at lag 1 (5% significance level) confirms the presence of correlation between rainfall
on consecutive days, supporting the use of the Markov model.

Modelling Daily Rainfall Intensity

If Yy j, is a random variable describing the rainfall intensity on day t in season k, conditional on
Xix =1, we assume Y, is independently and identically distributed (i.i.d.) and follows a Gamma
distribution Y;, ~T'(ay, 8)), where a; > 0 is the shape parameter and 6, > 0 is the scale parameter. The
Gamma distribution is widely used to model skewed rainfall data (Chandler and Wheater, 2002; Martinez-
Villalobos and Neelin, 2019).

We define the actual rainfall amount R; , on day t in season k as:

_ Yt,kJ Xt,k =1
Ree = {0, otherwise’ @

The expected total seasonal rainfall is given by:

ok E[Rei] = mimkELYi], 3)

where n, is the number of days in the season k, ; ,, denotes the stationary probability of being a wet day,
and E[Y,] is the expected rainfall intensity.

Integration with Climate Projections

To incorporate climate change scenarios, we replace Sy, in equations (1a) and (1b) with projected
seasonal rainfall values from Table B-1 of (DOST-PAGASA, 2018). By doing so, we can compute new
transition probabilities, po " and py; ', and the stationary probability m; ,'. We rearrange equation (3)
and solve for E[Y,] using the projected seasonal rainfall totals as a value for Z?LE [Rt'k]. With the
computed value for E[Y,], we can find the projected scale parameter ;' while retaining the shape
parameter a,.

Simulating Projected Daily Rainfall and Validation

We visualize one realization for lower, median, and upper bound situations for both RCP 4.5
and 8.5 using values for pog ', P11  and 6;". To evaluate the model’s statistical consistency, we compute
Z-scores from 10,000 simulated realizations.
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All analyses, simulations, and visualizations are performed in Python 3.12.

RESULTS AND DISCUSSION

This section presents the results of the Markov chain-Gamma model used to generate daily
rainfall estimates from seasonal climate projections for the National Capital Region (NCR) and discusses
the implications of projected changes in daily rainfall patterns, particularly in the context of urban flood
risk and climate prevention, mitigation, and adaptation strategies.

Description of Historical Data

Figure 1 shows the historical annual rainfall time series. The dataset exhibits a mean daily
rainfall of 6.75 mm with a standard deviation of 18.41 mm. A few extreme values exceeding 250 mm,
around 38 times the daily average, are present. Strong seasonality is evident: rainfall typically occurs from
June to November, while the rest of the year is relatively dry, consistent with PAGASA's Climate Type 1
classification (DOST-PAGASA, 2011).
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Figure 1. Observed total daily rainfall (in mm) from 1970 to 2000 in Science Garden station.

Table 1 summarizes key rainfall statistics per season. The Jun—Jul-Aug period is the wettest,
with about 59 rainy days out of 92 and an average of approximately 14 mm of rain per day, equivalent to
around 1,300 mm for the season. In contrast, the driest period is Dec—Jan—Feb, with only about 11 rainy
days out of 90 and a seasonal total of roughly 100 mm. This seasonal difference highlights the strong
monsoonal influence on NCR’s climate.

The Jun-Jul-Aug season also exhibits the highest standard deviation of seasonal rainfall (492
mm), indicating high inter-annual variability. Moreover, this season also records the highest daily rainfall
intensity values, with the 99th percentile reaching 105 mm. This shows the frequent occurrence of extreme
rainfall events. Interestingly, Dec-Jan-Feb and Mar-Apr-May show extreme rainfall events, with the 99th
percentile of daily rainfall exceeding 18 mm and 32 mm, respectively. All together, these results imply that
extreme rainfall events can happen year-round and present challenges in making long-term forecasting and
planning.
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Table 1. Observed statistics of the historical daily rainfall from 1970 to 2000 in the Science Garden
station.

Variable Dec-Jan-Feb Mar-Apr- Jun-Jul-Aug Sep-Oct-Nov
May

Mean number of wet days 12.10 16.63 58.97 48.16
Std Dev of the number of wet 770 836 12.45 12.76
days
Mean daily rainfall 1.12 2.26 14.06 9.31
(in mm)
Std Dev of Daily Rainfall 4.18 7.22 23.94 19.68
(in mm)
Mean of Seasonal Rainfall 102.42 207.61 1293.10 847.42
(in mm)
Std Dev of Seasonal Rainfall 105.24 152.29 491.74 341.81
(in mm)
9?th Percentile of Daily Rainfall 18.07 1247 105.18 38.76
(in mm)

Projected Daily Rainfall
Historical Daily Rainfall Occurrence

The Markov chain model transition probabilities are estimated using linear regression on
seasonal rainfall totals. Figure 2 shows observed seasonal rainfall totals and the fitted regression lines. The
intercepts of dry-to-dry transition probabilities for Dec-Jan-Feb and Mar-Apr-May are close to 1 (ap; =
ay, = 0.94), while Jun-Jul-Aug and Sep-Oct-Nov are moderate (ag3 = 0.54,a,, = 0.77, respectively).
As for the intercepts of wet-to-wet transition probabilities, a; ; = 0.20,a,, = 0.31,a,3 = 0.66anda, , =
0.52. In all cases, the regression slopes are small, with a magnitude < 0.001. Even with hypothetically
extreme seasonal rainfall of 5000 mm, the transition probabilities would remain strictly between 0 and 1.
With the exception of pyg 3, all fitted transition probabilities have R* values ranging from 20% to 50%.

Notably, all regression lines for dry-to-dry transition probabilities p,, are negatively sloping.
This behavior is expected since the persistence of dry spells has a negative relationship with seasonal
rainfall total. That is, as seasonal rainfall increases, the length of dry days decreases, which reduces the
chance that a dry day is followed by another dry day. Dec—Jan—Feb and Mar—Apr—May exhibit the highest
dry-to-dry transition probabilities, suggesting strong persistence of dry days during these seasons. On the
other hand, all wet-to-wet transition probabilities p, are positively sloping. This indicates that consecutive
wet days are likely when the seasonal rainfall total is high. Jun—Jul-Aug, the wettest season as mentioned
in the previous section, exhibits the highest wet-to-wet transition probability (p;; = 0.66 + 0.00007S5).
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Figure 2. Observed regression relationship between seasonal rainfall totals and daily transition
probabilities pyo (dry-to-dry) and p;; (wet-to-wet) for (a) Dec-Jan-Feb, (b) Mar-Apr-May, (c)
Jun-Jul-Aug, and (d) Sep-Oct-Nov.

Historical daily rainfall intensity

The rainfall intensity on wet days is modelled using a Gamma distribution. Figure 3 shows the
histogram of rainfall intensity and the fitted Gamma distributions together with parameter estimates and
some error statistics. Results show that the fitted Gamma distributions follow the historical rainfall
histograms, as evidenced by the low root mean square error (RMSE) and mean absolute error (MAE)
values.

The shape parameter «, is similar across seasons (0.73-0.82), which indicates that the overall
shape of rainfall distribution is consistent all year round. On the other hand, the scale parameter 6}, is higher
for Jun—Jul-Aug (28.14) and Sep—Oct—Nov (24.08), which indicates that the average intensity of rainfall
during these seasons is higher. Because a;, > 6, for all k, the distribution is right-skewed—capturing the
observed pattern of many low-rainfall days and a few extreme rainfall events.
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Figure 3. Daily rainfall intensity fitted with a Gamma distribution for (a) Dec-Jan-Feb, (b) Mar-Apr-May,
(¢) Jun-Jul-Aug, and (d) Sep-Oct-Nov.

Projected Daily Rainfall Daily

Table 2 presents the comparison of transition probabilities and scale parameters decomposed
from PAGASA’s 2018 seasonal projections under RCP 4.5 and RCP 8.5 scenarios (Table 2). These results
allow for a deeper understanding of how rainfall occurrence and intensity may evolve in the future across
seasons.

In Dec-Jan-Feb, there is an increase in the probability of wet-to-wet days accompanied by a rise
in rainfall intensity. Results are similar in Mar-Apr-May, though changes are less pronounced. These
patterns imply intensification of wet conditions during these seasons. In contrast, Jun-Jul-Aug and Sept-
Oct-Nov exhibit an increase in the probability of dry-to-dry days and a decrease in rainfall intensity. These
shifts indicate a drier season, with fewer wet days and reduced rainfall amounts. These changes are
illustrated in Figure 4, which shows the Z-score of median projected rainfall in relation to the historical
values. Dec-Jan-Feb shows the highest positive Z-score, which implies wetter conditions. In Mar-Apr-
May, the Z-score remains positive but very close to zero, indicating almost no change from the historical
value. The latter seasons show negative Z-scores, implying drier conditions. These align with PAGASA’s
projected changes, supporting the model’s consistency. Overall, these seasonal changes have important
implications for water resource planning, agriculture, and disaster preparedness, as they point to possible
increased flood risks early in the year and drought risks in the latter months. Using the updated parameters
in Table 2, a sample daily rainfall time series is simulated (Figure 5). Due to the model’s stochastic nature,
other outcomes are also possible.
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Table 2. Projected daily rainfall parameters for years 2035 to 2065 per season.

RCP 4.5 RCP 8.5
Historical Lower Median Upper Lower Median Upper Interpretation
bound bound bound bound
Poo1 0.90620 0.9026 0.8962 0.8827 0.9016 0.8926 0.8834 Increased
Pl 0.31880 0.3214 0.3437 0.3909 0.3250 0.3564 0.3884 number of wet
days and
6, 10.57 12.2750 13.3007 14.8545 12.4557 13.7922 14.7882 intensity of
rainfall
Poo2 0.8694 0.8717 0.8675 0.8557 0.8770 0.8688 0.8587 Slight increase
Pliz 0.41588 0.4155 0.4218 0.4395 0.4075 0.4197 0.4349 in wet days
, and intensity
0, 15.13 14.6635 15.0340 15.9304 14.1533 14.9147 15.7160 .
of rainfall
Poo,3 0.2814 0.5157 0.5129 0.5105 0.5146 0.5119 0.5085 Decreased
Plis 0.75051 0.7221 0.7313 0.7393 0.7256 0.7346 0.7459 number of wet
days and
03’ 28.14 20.2096 22.7566 24.9065 21.1943 23.6511 26.6663 intensity of
rainfall
Poos 0.6005 0.6345 0.6270 0.6059 0.6301 0.6118 0.5872 Decreased
Plia 0.6641 0.6341 0.6403 0.6577 0.6378 0.6528 0.6731 number of wet
days and
0, 24.08 20.3548 21.0762 22.9664 20.7799 22.4589 24.5088 intensity of
rainfall
1.5 - N RCP4.5
WEN RCP 8.5

Z-Score of Seasonal Rainfall

T T T T
Dec-Jan-Feb Mar-Apr-May Jun-jul-Aug Sep-Oct-Nov

Figure 4. Z-scores of median projected seasonal rainfall under RCP 4.5 and RCP 8.5 (10,000 simulations).
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CONCLUSION

This study applied a first-order Markov chain and a Gamma distribution to statistically model
the occurrence and intensity of daily rainfall, respectively. The main objective was to decompose projected
seasonal rainfall into daily rainfall, using historical data and seasonal climate projections from PAGASA
under RCP 4.5 and RCP 8.5 scenarios. By incorporating projected seasonal totals into the Markov chain—
Gamma framework, the model produced plausible daily rainfall sequences, offering a way to explore future
rainfall scenarios at a daily scale. While only a single realization was generated for illustration, 10,000
simulations were performed per scenario to compute Z-scores, which assess how well the simulated rainfall
statistics align with expected seasonal behaviors.

The model does not aim to predict the exact occurrence or intensity of rainfall on specific days.
Rather, it provides a probabilistic understanding of how rainfall characteristics may shift under climate
change—such as changes in the number of wet days or the distribution of rainfall intensity—which can be
inferred from changes in model parameters. The results indicate that the first half of the year (Dec-Jan-Feb
and Mar-Apr-May) may experience an increase in the number of wet days and rainfall intensity, while the
second half (Jun-Jul-Aug and Sep-Oct-Nov) may see fewer wet days and less intense rainfall. This
information can be valuable for water resource planning, flood risk assessment, and climate adaptation
strategies.
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Figure 5. Simulated daily rainfall under RCP 4.5 and RCP 8.5 scenarios for (a) Dec-Jan-Feb,
(b) Mar-Apr-May, (c) Jun-Jul-Aug and (d) Sep-Oct-Nov.
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Nonetheless, several limitations should be noted. The model assumes stationarity within each
season and was applied to data from a single station, which may limit its generalizability across regions.
The Gamma distribution was selected for computational efficiency but not formally tested for goodness-
of-fit. Nevertheless, model performance was assessed using root mean square error (RMSE) and mean
absolute error (MAE) between simulated and historical seasonal rainfall totals. Additionally, the model
treats seasons independently and may underestimate long-term variability, particularly in seasonal
aggregates.

Future work may explore higher-order Markov chains to account for more complex temporal
dependencies in rainfall occurrence. New or alternative probability distributions could be evaluated to
better capture rainfall extremes. Machine learning techniques may also offer promising avenues for long-
term rainfall modeling and projection. Ultimately, improving the model’s accuracy and applicability will
require formal validation using proven statistical tests and application across diverse climatic settings.
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