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 ABSTRACT – This study presents a stochastic method to decompose projected 

seasonal rainfall into daily rainfall using a first-order Markov chain for rainfall 

occurrence and a Gamma distribution for rainfall intensity. The model is applied to 

the National Capital Region (NCR) of the Philippines using historical daily rainfall 

data from 1970 to 2000 and seasonal climate projections from PAGASA (2018) under 

RCP 4.5 and RCP 8.5 scenarios. Transition probabilities are modeled as functions of 

seasonal rainfall totals, allowing daily rainfall sequences to be generated based on 

projected seasonal values. Simulation results reveal seasonal shifts in rainfall 

characteristics: the dry season (Dec-Jan-Feb) and early wet season (Mar-Apr-May) 

show increases in both wet-day frequency and intensity, while the wet season (Jun-

Jul-Aug) and post-monsoon period (Sep-Oct-Nov) show decreases in both. While a 

single realization is shown for illustration, Z-scores are computed from 10,000 

simulated realizations to assess the model’s statistical consistency. While not intended 

for precise daily predictions, the model offers a useful tool for exploring plausible 

rainfall scenarios under climate change. The approach can support applications in 

flood risk assessment and adaptation planning. Future improvements may include 

higher-order Markov chains, alternative intensity distributions, and formal validation 

to enhance model accuracy and applicability across regions. 
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INTRODUCTION 

 

The Philippines, an archipelagic country in Southeast Asia, experiences monsoon rains and 

around 20 tropical cyclones or typhoons annually (DOST-PAGASA, 2011). These contribute to frequent 

flood-related disasters, resulting in loss of lives, property, and livelihoods (Hong et al., 2022; Villafuerte 

et al., 2015). As climate change intensifies, risks are expected to increase, making it important to develop  
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reliable rainfall projections to inform disaster prevention, adaptation, and mitigation planning (DOST-

PAGASA & Manila Observatory Ateneo de Manila University, 2020; Hong et al., 2022; Villafuerte et al., 

2020; Villafuerte et al., 2020; Worku et al., 2018; Yoo et al., 2016).  

Daily rainfall projections are essential for a wide range of climate-sensitive applications that 

depend on the timing and intensity of rainfall events. For instance, flood simulations, drainage system 

design, and early warning systems depend on estimates of rainfall on specific days, particularly those that 

may trigger flooding. In agriculture, daily rainfall timing directly affects planting schedules, irrigation 

planning, and crop yields, especially for rainfed systems. Crops are often sensitive not only to the amount 

of rainfall but also to when it occurs during their growth stages (Rasool et al., 2024).  

The Philippine Atmospheric, Geophysical and Astronomical Services Administration 

(PAGASA), the country’s national weather and climate agency, regularly publishes assessments of the 

current and projected climate. In its 2011 report, PAGASA observed a non-statistically significant increase 

in the intensity and frequency of extreme rainfall events, and a similar trend in the number of strong tropical 

cyclones (with maximum sustained winds of 150 kph and above) based on data from 1951–2009 (DOST-

PAGASA, 2011). A 2018 report highlighted spatial variability in rainfall trends (baseline 1971–2000), with 

Northern Luzon, Palawan, western Visayas, and parts of Mindanao experiencing decreasing annual rainfall, 

while the rest of the country saw increasing trends, particularly during the northeast monsoon season 

(DOST-PAGASA, 2018). 

In the 2018 report, PAGASA provided seasonal (Dec–Jan–Feb, Mar–Apr–May, Jun–Jul–Aug, 

and Sep–Oct–Nov) rainfall projections per province to account for spatial variability. These projections 

were downscaled from global climate models under Representative Concentration Pathways (RCP) 4.5 and 

8.5 for 2036–2065. RCP 4.5 is a stabilization scenario with intermediate greenhouse gas concentrations, 

while RCP 8.5 assumes high emissions (IPCC, 2014). Under RCP 8.5, rainfall in Mindanao could decrease 

by over 40%, while Luzon and western Visayas could see more than a 40% increase by mid-century. A 

more recent 2021 report provided projected climate extremes per province (baseline 1986–2005), showing 

a general decreasing trend in rainfall nationwide, with more localized extreme rainfall events (DOST-

PAGASA & Manila Observatory Ateneo de Manila University, 2020). Other studies have similarly 

observed increasing rainfall during Dec–Jan–Feb and decreasing rainfall during Jun–Jul–Aug (Hong et al., 

2022; Supari et al., 2020; Tangang et al., 2020; Villafuerte et al., 2015). 

These seasonal projections, especially those from PAGASA, have been used in integrating 

scientific information into climate-sensitive development planning at local levels (DOST-PAGASA, 2018; 

DOST-PAGASA & Manila Observatory Ateneo de Manila University, 2020). However, their coarse 

temporal resolution limits their application in activities that require daily rainfall data, such as hydrologic 

modeling or flood simulations. Seasonal totals do not indicate which specific days will be rainy or how 

much rainfall will occur on each day. For decision-makers and modelers, it is crucial to identify not just 

the season, but the specific days when rainfall could reach flood-inducing levels. This information is vital 

for designing measures such as drainage systems, flood forecasting tools, and evacuation plans. 

To bridge this gap, stochastic weather generators can be used to convert seasonal rainfall 

projections into daily rainfall realizations. Stochastic rainfall models account for the inherently random 

nature of rainfall occurrence and intensity. In a study from 2016, Yoo et al. used a first-order Markov chain 

to model monthly rainfall by estimating historical transition probabilities between wet and dry days and 

modeling rainfall intensity. They then incorporated climate projections to assess changes in daily rainfall 

characteristics not captured by shifts in wet-day frequency alone (Yoo et al., 2016). 
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Building on this, we apply a Markov chain-Gamma model to decompose PAGASA’s 2018 

seasonal rainfall projections into daily rainfall. We model daily rainfall occurrence using a two-state first-

order Markov chain, with states representing rain or no rain, and transition probabilities capturing rainfall 

occurrence on a given day. After which, we use a Gamma distribution, which is suitable for positively 

skewed data, to model the rainfall intensity. We use historical daily rainfall data from the National Oceanic 

and Atmospheric Administration (NOAA) for the model. The focus of this study is the National Capital 

Region (NCR), an urban area highly vulnerable to flooding. We apply the model to PAGASA’s lower 

bound, median, and upper bound seasonal rainfall projections for RCP 4.5 and 8.5 (Table B-1 in (DOST-

PAGASA, 2018)). After developing the stochastic framework for disaggregating the seasonal rainfall 

projections as outlined above, we evaluate the performance of the model using Z-scores derived from 

historical observations and simulated rainfall. We apply the method to generate one possible daily rainfall 

time series under RCP 4.5 and RCP 8.5 scenarios for illustrative purposes, and we use the model parameters 

to derive projected daily rainfall characteristics. 

While this study provides a useful method for decomposing seasonal rainfall projections into 

daily rainfall data, it also has several limitations. First, the model is based on past rainfall patterns and 

assumes that future rainfall will behave similarly. Thus, there may be rainfall patterns in the future that the 

model cannot predict. Second, although the Gamma distribution is good for modeling rainfall intensity, it 

may not fully capture very heavy rainfall events, like heavy monsoon rains or storm rains, that can cause 

major flooding. Third, the model does not consider changes in the timing or length of the rainy season, 

which could also shift in the future. Fourth, the model uses rainfall data that covers large areas, which may 

miss small-scale local differences. Lastly, we focused only on rainfall and did not include other factors 

such as temperature, humidity, or wind, which also affect agriculture and flood risk. We also only generated 

one possible version of a daily rainfall time series for each climate scenario. Since rainfall is random by 

nature, many possible outcomes exist, and a single version may not show the full range of possibilities. 

These limitations should be considered when interpreting the results and applying them in planning or 

decision-making. 

 

MATERIALS AND METHODS 

 

This section outlines the data sources, study area, and modeling framework used to disaggregate 

seasonal rainfall projections into daily rainfall estimates. 

Study Area and Data Source 

Daily rainfall data from 1 January 1970 to 31 December 2000 are collected from the Science 

Garden station in Quezon City, Philippines (Latitude: 14.65, Longitude: 121.05), as available from the 

National Oceanic and Atmospheric Administration (NOAA) (NOAA, n.d.).  

We use the seasonal rainfall projections provided in Table B-1 DOST-PAGASA (2018) 

Observed and Projected Climate Change in the Philippines report for the National Capital Region (NCR), 

which includes lower bound, median, and upper bound estimates of seasonal changes (in both percentage 

and millimeters) for the years 2036–2065. 

Modelling Daily Rainfall Occurrence 

If 𝑋𝑡,𝑘 is a random variable indicating rainfall occurrence on a day 𝑡 in season 𝑘, where 𝑘 =

1,2,3,4 corresponds to Dec–Jan–Feb, Mar–Apr–May, Jun–Jul–Aug, and Sep–Oct–Nov, respectively, we 

model 𝑋𝑡,𝑘 as a two-state first-order Markov chain (see Yoo et al., 2016). A day is in state 1 (wet) if 
 

      3 

          
          
Journal of Nature Studies 24(2)      



Kabiri et al.    
          

          
rainfall exceeds 0 mm, and in state 0 (dry) otherwise. This results in four transition probabilities 𝑝𝑖𝑗,𝑘, 

where 𝑖, 𝑗 = 0,1, denoting the probability of transitioning from state 𝑖 on day 𝑡 − 1 to state 𝑗 on day 𝑡, in 

season 𝑘. The transition probability 𝑝10,2 denotes the likelihood that a day is dry (state 0) given that the 

previous day was wet (state 1), specifically within the March–April–May season. 

Because a day can only be wet or dry, 𝑝10,𝑘 = 1 − 𝑝11,𝑘 and 𝑝01,𝑘 = 1 − 𝑝00,𝑘, we estimate only 

𝑝00,𝑘 and 𝑝11,𝑘 using the linear regression models: 

 

 

Here, 𝑆𝑘 is the seasonal rainfall total, and 𝑎𝑖,𝑘 and 𝑏𝑖,𝑘 are regression parameters. The Ljung–Box 

autocorrelation test at lag 1 (5% significance level) confirms the presence of correlation between rainfall 

on consecutive days, supporting the use of the Markov model. 

Modelling Daily Rainfall Intensity 

If 𝑌𝑡,𝑘 is a random variable describing the rainfall intensity on day 𝑡 in season 𝑘, conditional on 

𝑋𝑡,𝑘 = 1, we assume 𝑌𝑡,𝑘  is independently and identically distributed (i.i.d.) and follows a Gamma 

distribution 𝑌𝑘  ~Γ(𝛼𝑘, 𝜃𝑘), where 𝛼𝑘 > 0 is the shape parameter and 𝜃𝑘 > 0 is the scale parameter. The 

Gamma distribution is widely used to model skewed rainfall data (Chandler and Wheater, 2002; Martinez-

Villalobos and Neelin, 2019).  

We define the actual rainfall amount 𝑅𝑡,𝑘 on day 𝑡 in season 𝑘 as: 

 

 

The expected total seasonal rainfall is given by: 

 

where 𝑛𝑘 is the number of days in the season 𝑘, 𝜋1,𝑘 denotes the stationary probability of being a wet day, 

and  𝐸[𝑌𝑘] is the expected rainfall intensity.   

Integration with Climate Projections 

To incorporate climate change scenarios, we replace 𝑆𝑘 in equations (1a) and (1b) with projected 

seasonal rainfall values from Table B-1 of (DOST-PAGASA, 2018). By doing so, we can compute new 

transition probabilities, 𝑝00,𝑘′ and 𝑝11,𝑘′, and the stationary probability 𝜋1,𝑘′. We rearrange equation (3) 

and solve for 𝐸[𝑌𝑘] using the projected seasonal rainfall totals as a value for ∑ 𝐸[𝑅𝑡,𝑘]
𝑛𝑘
𝑡=1 . With the 

computed value for 𝐸[𝑌𝑘], we can find the projected scale parameter 𝜃𝑘′ while retaining the shape 

parameter 𝛼𝑘. 

Simulating Projected Daily Rainfall and Validation 

We visualize one realization for lower, median, and upper bound situations for both RCP 4.5 

and 8.5 using values for 𝑝00,𝑘′, 𝑝11,𝑘′ and 𝜃𝑘′. To evaluate the model’s statistical consistency, we compute 

Z-scores from 10,000 simulated realizations. 

𝑝00,𝑘 = 𝑎0,𝑘𝑆𝑘 + 𝑏0,𝑘 , (1a) 

𝑝11,𝑘 = 𝑎1,𝑘𝑆𝑘 + 𝑏1,𝑘 . (1b) 

𝑅𝑡,𝑘 = {
𝑌𝑡,𝑘 , 𝑋𝑡,𝑘 = 1

0, otherwise
. (2) 

∑ 𝐸[𝑅𝑡,𝑘]
𝑛𝑘
𝑡=1 = 𝑛𝑘𝜋1,𝑘𝐸[𝑌𝑘], (3) 
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All analyses, simulations, and visualizations are performed in Python 3.12. 

 

RESULTS AND DISCUSSION 

 

This section presents the results of the Markov chain-Gamma model used to generate daily 

rainfall estimates from seasonal climate projections for the National Capital Region (NCR) and discusses 

the implications of projected changes in daily rainfall patterns, particularly in the context of urban flood 

risk and climate prevention, mitigation, and adaptation strategies. 

Description of Historical Data 

Figure 1 shows the historical annual rainfall time series. The dataset exhibits a mean daily 

rainfall of 6.75 mm with a standard deviation of 18.41 mm. A few extreme values exceeding 250 mm, 

around 38 times the daily average, are present. Strong seasonality is evident: rainfall typically occurs from 

June to November, while the rest of the year is relatively dry, consistent with PAGASA's Climate Type 1 

classification (DOST-PAGASA, 2011). 

 

 
Figure 1. Observed total daily rainfall (in mm) from 1970 to 2000 in Science Garden station. 

 

Table 1 summarizes key rainfall statistics per season. The Jun–Jul–Aug period is the wettest, 

with about 59 rainy days out of 92 and an average of approximately 14 mm of rain per day, equivalent to 

around 1,300 mm for the season. In contrast, the driest period is Dec–Jan–Feb, with only about 11 rainy 

days out of 90 and a seasonal total of roughly 100 mm. This seasonal difference highlights the strong 

monsoonal influence on NCR’s climate.  

The Jun-Jul-Aug season also exhibits the highest standard deviation of seasonal rainfall (492 

mm), indicating high inter-annual variability. Moreover, this season also records the highest daily rainfall 

intensity values, with the 99th percentile reaching 105 mm. This shows the frequent occurrence of extreme 

rainfall events. Interestingly, Dec-Jan-Feb and Mar-Apr-May show extreme rainfall events, with the 99th 

percentile of daily rainfall exceeding 18 mm and 32 mm, respectively. All together, these results imply that 

extreme rainfall events can happen year-round and present challenges in making long-term forecasting and 

planning. 
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Table 1. Observed statistics of the historical daily rainfall from 1970 to 2000 in the Science Garden 

station.  

Variable 
Dec-Jan-Feb 

Mar-Apr-

May 
Jun-Jul-Aug Sep-Oct-Nov 

Mean number of wet days 12.10 16.63 58.97 48.16 

Std Dev of the number of wet 

days 
7.70 8.36 12.45 12.76 

Mean daily rainfall  

(in mm) 

1.12 

 

2.26 

 

14.06 

 

9.31 

 

Std Dev of Daily Rainfall  

(in mm) 

4.18 

 

7.22 

 

23.94 

 

19.68 

 

Mean of Seasonal Rainfall  

(in mm) 

102.42 

 

207.61 

 

1293.10 

 

847.42 

 

Std Dev of Seasonal Rainfall  

(in mm) 

105.24 

 

152.29 

 

491.74 

 

341.81 

 

99th Percentile of Daily Rainfall 

(in mm) 
18.07 32.47 105.18 88.76 

  

Projected Daily Rainfall 

Historical Daily Rainfall Occurrence 

The Markov chain model transition probabilities are estimated using linear regression on 

seasonal rainfall totals. Figure 2 shows observed seasonal rainfall totals and the fitted regression lines. The 

intercepts of dry-to-dry transition probabilities for Dec-Jan-Feb and Mar-Apr-May are close to 1 (𝑎0,1 =

𝑎0,2 = 0.94), while Jun-Jul-Aug and Sep-Oct-Nov are moderate (𝑎0,3 = 0.54, 𝑎0,4 = 0.77, respectively). 

As for the intercepts of wet-to-wet transition probabilities, 𝑎1,1 = 0.20, 𝑎1,2 = 0.31, 𝑎1,3 = 0.66 and 𝑎1,4 =

0.52. In all cases, the regression slopes are small, with a magnitude ≤ 0.001. Even with hypothetically 

extreme seasonal rainfall of 5000 mm, the transition probabilities would remain strictly between 0 and 1. 

With the exception of 𝑝00,3, all fitted transition probabilities have 𝑅2 values ranging from 20% to 50%. 

Notably, all regression lines for dry-to-dry transition probabilities 𝑝00 are negatively sloping. 

This behavior is expected since the persistence of dry spells has a negative relationship with seasonal 

rainfall total. That is, as seasonal rainfall increases, the length of dry days decreases, which reduces the 

chance that a dry day is followed by another dry day. Dec–Jan–Feb and Mar–Apr–May exhibit the highest 

dry-to-dry transition probabilities, suggesting strong persistence of dry days during these seasons. On the 

other hand, all wet-to-wet transition probabilities 𝑝11 are positively sloping. This indicates that consecutive 

wet days are likely when the seasonal rainfall total is high. Jun–Jul–Aug, the wettest season as mentioned 

in the previous section, exhibits the highest wet-to-wet transition probability (𝑝11 = 0.66+ 0.00007𝑆3). 
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Figure 2. Observed regression relationship between seasonal rainfall totals and daily transition 

probabilities 𝑝00 (dry-to-dry) and 𝑝11 (wet-to-wet) for (a) Dec-Jan-Feb, (b) Mar-Apr-May, (c) 

Jun-Jul-Aug, and (d) Sep-Oct-Nov. 

  

Historical daily rainfall intensity 

The rainfall intensity on wet days is modelled using a Gamma distribution. Figure 3 shows the 

histogram of rainfall intensity and the fitted Gamma distributions together with parameter estimates and 

some error statistics. Results show that the fitted Gamma distributions follow the historical rainfall 

histograms, as evidenced by the low root mean square error (RMSE) and mean absolute error (MAE) 

values. 

The shape parameter 𝛼𝑘 is similar across seasons (0.73-0.82), which indicates that the overall 

shape of rainfall distribution is consistent all year round. On the other hand, the scale parameter 𝜃𝑘 is higher 

for Jun–Jul–Aug (28.14) and Sep–Oct–Nov (24.08), which indicates that the average intensity of rainfall 

during these seasons is higher. Because 𝛼𝑘 > 𝜃𝑘 for all 𝑘, the distribution is right-skewed—capturing the 

observed pattern of many low-rainfall days and a few extreme rainfall events. 
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Figure 3. Daily rainfall intensity fitted with a Gamma distribution for (a) Dec-Jan-Feb, (b) Mar-Apr-May, 

(c) Jun-Jul-Aug, and (d) Sep-Oct-Nov. 
 

Projected Daily Rainfall Daily 

 

Table 2 presents the comparison of transition probabilities and scale parameters decomposed 

from PAGASA’s 2018 seasonal projections under RCP 4.5 and RCP 8.5 scenarios (Table 2). These results 

allow for a deeper understanding of how rainfall occurrence and intensity may evolve in the future across 

seasons. 

In Dec-Jan-Feb, there is an increase in the probability of wet-to-wet days accompanied by a rise 

in rainfall intensity. Results are similar in Mar-Apr-May, though changes are less pronounced. These 

patterns imply intensification of wet conditions during these seasons. In contrast, Jun-Jul-Aug and Sept-

Oct-Nov exhibit an increase in the probability of dry-to-dry days and a decrease in rainfall intensity. These 

shifts indicate a drier season, with fewer wet days and reduced rainfall amounts. These changes are 

illustrated in Figure 4, which shows the Z-score of median projected rainfall in relation to the historical 

values. Dec-Jan-Feb shows the highest positive Z-score, which implies wetter conditions. In Mar-Apr-

May, the Z-score remains positive but very close to zero, indicating almost no change from the historical 

value. The latter seasons show negative Z-scores, implying drier conditions. These align with PAGASA’s 

projected changes, supporting the model’s consistency. Overall, these seasonal changes have important 

implications for water resource planning, agriculture, and disaster preparedness, as they point to possible 

increased flood risks early in the year and drought risks in the latter months. Using the updated parameters 

in Table 2, a sample daily rainfall time series is simulated (Figure 5). Due to the model’s stochastic nature, 

other outcomes are also possible. 
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Table 2. Projected daily rainfall parameters for years 2035 to 2065 per season. 

 Historical 

RCP 4.5 RCP 8.5 

Interpretation Lower 

bound 
Median 

Upper 

bound 

Lower 

bound 
Median 

Upper 

bound 

𝑝00,1
′  0.90620 0.9026 0.8962 0.8827 0.9016 0.8926 0.8834 Increased 

number of wet 

days and 

intensity of 

rainfall 

𝑝11,1
′  0.31880 0.3214 0.3437 0.3909 0.3250 0.3564 0.3884 

𝜃1′ 10.57 12.2750 13.3007 14.8545 12.4557 13.7922 14.7882 

𝑝00,2
′  0.8694 0.8717 0.8675 0.8557 0.8770 0.8688 0.8587 Slight increase 

in wet days 

and intensity 

of rainfall 

𝑝11,2
′  0.41588 0.4155 0.4218 0.4395 0.4075 0.4197 0.4349 

𝜃2′ 15.13 14.6635 15.0340 15.9304 14.1533 14.9147 15.7160 

𝑝00,3
′  0.2814 0.5157 0.5129 0.5105 0.5146 0.5119 0.5085 Decreased 

number of wet 

days and  

intensity of 

rainfall 

𝑝11,3
′  0.75051 0.7221 0.7313 0.7393 0.7256 0.7346 0.7459 

𝜃3′ 28.14 20.2096 22.7566 24.9065 21.1943 23.6511 26.6663 

𝑝00,4
′  0.6005 0.6345 0.6270 0.6059 0.6301 0.6118 0.5872 Decreased 

number of wet 

days and  

intensity of 

rainfall 

𝑝11,4
′  0.6641 0.6341 0.6403 0.6577 0.6378 0.6528 0.6731 

𝜃4′ 24.08 20.3548 21.0762 22.9664 20.7799 22.4589 24.5088 

 

 

 
Figure 4. Z-scores of median projected seasonal rainfall under RCP 4.5 and RCP 8.5 (10,000 simulations). 
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CONCLUSION 

 

This study applied a first-order Markov chain and a Gamma distribution to statistically model 

the occurrence and intensity of daily rainfall, respectively. The main objective was to decompose projected 

seasonal rainfall into daily rainfall, using historical data and seasonal climate projections from PAGASA 

under RCP 4.5 and RCP 8.5 scenarios. By incorporating projected seasonal totals into the Markov chain–

Gamma framework, the model produced plausible daily rainfall sequences, offering a way to explore future 

rainfall scenarios at a daily scale. While only a single realization was generated for illustration, 10,000 

simulations were performed per scenario to compute Z-scores, which assess how well the simulated rainfall 

statistics align with expected seasonal behaviors. 

The model does not aim to predict the exact occurrence or intensity of rainfall on specific days. 

Rather, it provides a probabilistic understanding of how rainfall characteristics may shift under climate 

change—such as changes in the number of wet days or the distribution of rainfall intensity—which can be 

inferred from changes in model parameters. The results indicate that the first half of the year (Dec-Jan-Feb 

and Mar-Apr-May) may experience an increase in the number of wet days and rainfall intensity, while the 

second half (Jun-Jul-Aug and Sep-Oct-Nov) may see fewer wet days and less intense rainfall. This 

information can be valuable for water resource planning, flood risk assessment, and climate adaptation 

strategies. 

 

Figure 5. Simulated daily rainfall under RCP 4.5 and RCP 8.5 scenarios for (a) Dec-Jan-Feb,  

(b) Mar-Apr-May, (c) Jun-Jul-Aug and (d) Sep-Oct-Nov. 
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Nonetheless, several limitations should be noted. The model assumes stationarity within each 

season and was applied to data from a single station, which may limit its generalizability across regions. 

The Gamma distribution was selected for computational efficiency but not formally tested for goodness-

of-fit. Nevertheless, model performance was assessed using root mean square error (RMSE) and mean 

absolute error (MAE) between simulated and historical seasonal rainfall totals. Additionally, the model 

treats seasons independently and may underestimate long-term variability, particularly in seasonal 

aggregates. 

Future work may explore higher-order Markov chains to account for more complex temporal 

dependencies in rainfall occurrence. New or alternative probability distributions could be evaluated to 

better capture rainfall extremes. Machine learning techniques may also offer promising avenues for long-

term rainfall modeling and projection. Ultimately, improving the model’s accuracy and applicability will 

require formal validation using proven statistical tests and application across diverse climatic settings. 
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